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form Fq [t; θ]. This generalizes the classical notion of exponent 
(a.k.a. order or period) of a polynomial with coefficients in a 
finite field. The classical connections between the exponent 
of a polynomial, the order of its roots and of its companion 
matrix are obtained via the study of a notion of skew order 
of an element in a finite group.
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1. Introduction

Let f(x) ∈ Fq[x] such that f(0) �= 0. It is well known (cf. p. 75 [7]) that there 
exists a positive integer e = e(f) such that f(x) divides xe − 1. The least such e is the 
exponent of f(x) (a.k.a. order or period of f(x)). This definition is very important for 
the study of polynomials over finite fields and in coding theory. We will generalize it to a 
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setting that will encapsulate the case of polynomials in general Ore extensions over finite 
rings. Applications in (non-necessarily commutative) coding theory will be developed in a 
future paper. In the case of automorphism type Ore extensions the situation is somewhat 
similar to what it is in the classical case. We make use of the fact that in the polynomial 
ring R = A[t; σ], where σ is an automorphism of the ring A, the polynomial t is invariant 
i.e., Rt = tR. In a general Ore extension A[t; σ, δ] the polynomial t is no longer invariant 
but since A is finite, there will often exist an invariant polynomial that can play its role. 
This leads us to define and study, in Section 2, the relative exponent of two elements of a 
ring in a quite general setting. Section 3 is essentially devoted to the study of exponents 
of polynomials in Fq[t; θ]. This ring has been shown to be useful in different contexts and 
in particular in coding theory (see [1–3,8]).

2. Relative exponents in general finite rings

Lemma 2.1. Let R be a ring with 1 and f, g ∈ R be such that fg ∈ Rf . Let rg :
R/Rf→R/Rf the right multiplication by g. Consider the following statements:

(i) the map rg is one-to-one;
(ii) for any h ∈ R, if hg ∈ Rf then h ∈ Rf ;
(iii) there exists a positive integer e such that fe − 1 ∈ Rg;
(iv) the map rg is onto;
(v) Rg + Rf = R.

Then:

a) we always have (i)⇔ (ii) and (iii)⇒ (iv)⇔ (v);
b) if |R/Rg| < ∞ and f is not a zero divisor and is such that fR = Rf we also have 

(ii)⇒ (iii);
c) if conditions b) are satisfied and moreover |R/Rf | < ∞, then the statements (i) to 

(v) are equivalent.

Proof. a) and c) are left to the reader. We prove only part b). Since |R/Rg| < ∞, the 
cosets f i + Rg, for i ≥ 1, cannot be all distinct, then there exist integers 0 < l < s such 
that f l(1 − fs−l) ∈ Rg and hence there exists h ∈ R such that f l(1 − fs−l) = hg ∈ Rf . 
Statement (ii) and the fact that Rf = fR ensure that there exist q1, q′1 ∈ R such that 
h = q1f = fq′1. Since f is not a zero divisor we have f l−1(1 −fs−l) = q′1g ∈ Rf . Repeating 
this argument leads to the existence of q′2, q′3, . . . , q′l ∈ R such that f l−i(1 − fs−l) = q′ig, 
for 2 ≤ i ≤ l. In particular, we have 1 − fs−l = q′lg ∈ Rg. �

The above Lemma 2.1 leads to the definition (a) hereafter. In the second definition 
we briefly recall the notion of an Ore extension.
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Definitions 2.1.

(a) For f, g ∈ R the right exponent of g relative to f is the smallest strictly positive 
integer e = er(g, f), when it exists, such that fe − 1 ∈ Rg i.e., g is a right divisor of 
fe − 1. Similarly we can define the notion of left exponent of g relative to f .

(b) Let A be a ring, σ ∈ Aut(A) and δ ∈ End(R, +) be a σ-derivation of A. The skew 
polynomial ring (a.k.a. Ore extension) R = A[t; σ, δ] consists of polynomials written 
as 

∑
ait

i ∈ R and equipped with the usual addition while the multiplication is 
based on the following “rule of commutation”: ta = σ(a)t + δ(a). We will mainly be 
concerned with the case when A is a finite ring and δ = 0.

(c) If Fq is a finite field with q = pl for some prime p and positive integer l, we denote 
by θ the Frobenius map defined by θ(a) = ap for all a ∈ Fq. The ring Fq[t; θ] will be 
referred to as an Ore–Frobenius ring.

Examples 2.1. Let q = pn, p a prime.

1) Let R = Fq[x], f(x) = x, g(x) ∈ R such that g(0) �= 0 (so that condition (i) of the 
lemma is satisfied). Then er(g, x) always exists and is the classical exponent of g (cf. 
p. 75 [7]).

2) Let R = Fq[t; θ], where θ is the Frobenius automorphism, f(t) = t and g(t) ∈ R

with nonzero constant term. Then er(g, f = t) is the exponent that will be studied 
in Section 3. There, we present the ring Fq[t; θ] and concrete ways of computing this 
exponent.

3) More generally than the previous example, we can consider a finite ring A, an au-
tomorphism σ ∈ Aut(A) and f(t) = t ∈ R = A[t; σ]. If g(t) ∈ R is such that its 
constant term is invertible then Rg + Rt = R and all the conditions of the lemma 
will be satisfied. This example will be useful in the next section while considering 
the embedding of the Frobenius–Ore extension in a ring of the form Mn(Fq)[t; θ].

4) Let A = Fq[x]/(xp), R = A[t; d
dx ], f = tp, g = g(t), monic, with Rg + Rtp = R. 

Since for a ∈ A and m ∈ N we have tma =
∑m

i=0
(
m
i

)
a(i)tm−i, where a(i) is the 

ith derivative, then tpa = atp, so Rf = fR and the above Lemma 2.1 implies that 
er(g, f) exists.

5) Consider an invertible matrix A ∈ Mn(Fq). If g(x) = x − A ∈ Mn(Fq)[x] and 
f(x) = x, then we easily check that the exponent of g(x) relative to x coincides with 
the order of A in GLn(Fq).

Let us give some basic properties of the relative exponent.

Lemma 2.2. Suppose that f, g, h are elements in a ring R such that er(g, f) and er(h, f)
exist. Then:

a) g is a right factor of f l − 1 if and only if er(g, f) divides l;
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b) if g is a right factor of h then er(g, f) divides er(h, f);
c) if Rg ∩Rh = Rm then er(m, f) exists and er(m, f) is the least common multiple of 

er(g, f) and er(h, f).

Proof. a) Put e := er(g, f) and suppose there exists h ∈ R such that hg = f l − 1. 
Let q, r ∈ N be such that l = qe + r with 0 ≤ r < e. This gives hg = f l − 1 =
fqe+r − 1 = fr(fqe − 1) + fr − 1. Since fe − 1 ∈ Rg, we also have fqe − 1 ∈ Rg

and hence fr − 1 ∈ Rg. This contradicts the definition of er(g, f) unless r = 0 and e
divides l, as required. Conversely, suppose that eq = l. We then have f l−1 = (fq)e−1 =
(1 + fe + · · · + fe(q−1))(fe − 1) ∈ Rg.

b) Put e′ := er(h, f). Since g is a right factor of h and h is a right factor of fe′ − 1, 
then g is a right factor of fe′ − 1 and hence e divides e′.

c) For simplicity let us write e(g), e(h), e(m) instead of er(g, f), er(h, f), er(m, f). Let 
us also put e for the least common multiple of e(g) and e(h). Since g and h divide m on 
the right, we get that e(g) and e(h) both divide e(m) and hence also e divides e(m). On 
the other hand, g right divides fe(g) − 1 and hence also fe − 1. Similarly h right divides 
fe − 1. Since Rg ∩Rh = Rm, we get that m right divides fe − 1. �

We will see in Section 3 that in the case of Fq[t; θ] the left and right exponents of a 
polynomial relative to t exist and are the same.

The study of exponents of polynomials in a skew polynomial ring A[t; σ] is related to 
a notion of order of an element in a group with an automorphism. We introduce this 
definition and study some of its elementary properties.

Definitions 2.2. Let G be a group and σ ∈ Aut(G).

1) Let g ∈ G and n ∈ N. We define the nth norm of g, denoted Nn(g) by N0(g) = 1
and, for n ≥ 1,

Nn(g) = σn−1(g)σn−2(g) · · ·σ(g)g.

2) An element g ∈ G is of finite σ-order if there exists a nonzero l ∈ N such that 
Nl(g) = 1. In this case ordσ(g) is the smallest l such that Nl(g) = 1.

3) For two elements x, g ∈ G we define x ◦
σ
g := σ(x)gx−1. We say that two elements 

g, h ∈ G are σ-conjugate if there exists an element x ∈ G such that h = σ(x)gx−1.

We can also define the σ-order of an element using the “increasing power of σ” i.e., 
σNn(g) := gσ(g) · · ·σn−1(g). We will not use this second definition except while consid-
ering the left evaluation of skew polynomial ring (cf. Remark 3.1(b)). Notice also that 
for any group G and σ ∈ Aut(G), the σ-conjugacy is an equivalence relation on G.

We give, in the following easy proposition, some relations between the above defini-
tions.
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Proposition 2.1. Let G be a finite group and σ ∈ Aut(G). Then

a) for l, s ∈ N, Nl+s(g) = σl(Ns(g))Nl(g) = σs(Nl(g))Ns(g);
b) for l, q ∈ N, we have Nlq(g) = σl(q−1)(Nl(g))σl(q−2)(Nl(g)) · · ·σl(Nl(g))Nl(g);
c) any g ∈ G is of finite σ-order;
d) Nr(g) = 1 if and only if ordσ(g) divides r;
e) if τ ∈ Aut(G) is such that στ = τσ, then ordσ(g) = ordσ(τ(g));
f) for any s ∈ N, Ns(σ(g)hg−1) = σs(g)Ns(h)g−1. With our notations this means 

Ns(g ◦
σ
h) = g ◦

σs
Ns(h);

g) if σl = id, then
i) σ(Nl(g)) = gNl(g)g−1;
ii) ordσ(g)|l · ord(Nl(g)).

Proof. a) By definition we have: Nl+s(g) = σl+s−1(g) · · ·σ(g)g = σl
(
σs−1(g) · · ·σ(g)g

)
×

σl−1(g) · · ·σ(g)g = σl(Ns(g))Nl(g). The second equality is shown similarly.
b) This follows easily from the statement a) above.
c) Since the group G is finite, for any g ∈ G, there must exist l, s ∈ N with s �= 0, 

such that Nl+s(g) = Nl(g). The statement a) above then implies that Ns(g) = 1. This 
yields the result.

d) Let us put l := ordσ(g). By definition we must have Nl(g) = 1 and l ≤ r. Let us 
write r = lq + s where s < l. We have 1 = Nr(g) = Nlq+s(g) = σs(Nlq(g))Ns(g). The 
point b) above then implies that 1 = Ns(g). Since s < l this shows that s = 0, as desired.

e) and f) These are left to the reader.
g) i) We compute: σ(Nl(g)) = σl(g)σl−1(g) · · ·σ(g) = gNl(g)g−1.
ii) Since σl = id, statement b) above shows that Nls(g) = Nl(g)s. If s is the order of 

Nl(g) in G, we get Nls(g) = Nl(g)s = 1. Part d) above then implies that ordσ(g) divides 
ls = l · ord(Nl(g)). �

In the case of a finite cyclic group, the last point of the previous lemma is more precise.

Corollary 2.1. Let G = 〈g〉 be a finite cyclic group and let l be the order of an automor-
phism σ ∈ Aut(G). Then we have ordσ(g) = l · ord(Nl(g)).

Proof. We already know that ordσ(g) divides l · ord(Nl(g)). Let p, n ∈ N be such that 
σ(g) = gp and n := |G| = ord(g). Since σl = id, we have that gpl = σl(g) = g

and hence gp
l−1 = 1. Since n = ord(g), we conclude that n divides pl − 1. We write 

ordσ(g) = il + r for i ∈ N and 0 ≤ r < l and, using the above lemma, we have 

1 = Nil+r(g) = Nl(g)iNr(g) = gi[l]+[r], where [l] = pl − 1
p− 1 and [r] = pr − 1

p− 1 . This implies 

that n divides i[l] +[r]. Hence there exists m ∈ N such that n(p −1)m = i(pl−1) +(pr−1). 
The fact that n divides pl−1 implies that n also divides pr −1. This shows that, for any 
x ∈ G, σr(x) = xpr = x. Since 0 ≤ r < l and l is the order of σ, we must have r = 0 and 
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1 = gi[l] = Nl(g)i. This yields that ord(Nl(g)) divides i and hence l · ord(Nl(g)) divides 
li = ordσ(g), as desired. �
Example 2.1. Recall that for q = pn, where p is a prime number and n is a positive 
integer, the multiplicative group of nonzero elements F∗

q is cyclic. Moreover the classical 
norm Nn(x) = θn−1(x) · · · θ(x)x, where θ is the Frobenius automorphism, is an onto 
map with values in F∗

p. The above corollary then shows that if x is a generator of F∗
q , 

ordθ(x) = n.ord(Nn(x)).

3. Exponents in Fq [t; θ]

Let us recall some facts about the noncommutative ring Fq [t; θ], where q = pl for some 
prime p and l ∈ N and θ is the Frobenius automorphism of Fq: θ(a) = ap. The elements 
of Fq [t; θ] are polynomials 

∑n
i=0 ait

i, ai ∈ Fq. They are added as ordinary polynomials 
and the multiplication is based on the commutation law:

ta = θ (a) t = apt, for a ∈ Fq.

This ring is called an Ore–Frobenius extension and its elements are skew polynomials. It is 
a left and right Euclidean domain. In particular, for f (t) ∈ Fq [t; θ] and a ∈ Fq, there exist
a unique polynomial q (t) ∈ Fq [t; θ] and a unique r ∈ Fq such that f (t) = q (t) (t− a)+r. 
Now, we define f (a), the (right) evaluation of f at a, by f (a) := r, and hence if 
f (t) =

∑n
i=0 cit

i, we have

f (a) = c0 +
n∑

i=1
ciθ

i−1 (a) · · · θ (a) a =
n∑

i=0
ciNi (a) =

n∑
i=0

cia
[i],

where [i] := pi−1 + pi−2 + · · · + p + 1 = pi − 1
p− 1 .

Definition 3.1. Let Fq be a finite field and θ be the Frobenius automorphism of Fq. Let 
f ∈ Fq [t; θ] be a nonzero polynomial. If f (0) �= 0, the right exponent of f is defined by 
er (f) := er(f, t). If f(0) = 0, we write f(t) = tmg(t), where m ∈ N and g ∈ Fq [t; θ] with 
g(0) �= 0 are uniquely determined, then er (f) := er(g, t). We define the left exponent 
similarly.

Remarks 3.1.

(a) Let us remark that if Fq ⊆ Fq′ and f(t) ∈ R := Fq[t; θ] ⊆ R′ := Fq′(t; θ] then we 
may compute er,R(f), the right exponent of f(t) considered as an element of R and 
er,R′(f) the right exponent of f considered as an element of R′. In fact, these two 
numbers coincide. To show this, first notice that er,R′(f) ≤ er,R(f). On the other 
hand, it is easy to prove, by induction on deg(h), that if f ∈ R and h ∈ R′ are 
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such that hf ∈ R then h is actually an element of R. Applying this to our situation 
we conclude that if Fq ⊆ Fq′ and f(t) ∈ Fq[t; θ] ⊆ Fq′ [t; θ], h(t) ∈ Fq′ [t; θ] are such 
that h(t)f(t) = ts − 1, where s = er,R′(f) ∈ N, then, in fact, h(t) ∈ Fq[t; θ]. This 
shows that er,R(f) ≤ s and we obtain that er,R(f) = er,R′(f). We conclude that the 
definition of er(f) is independent of the finite field where f is supposed to have its 
coefficients.

(b) Let us mention that the left evaluation of a polynomial f(t) =
∑n

i=0 ait
i ∈ Fq[t, θ]

at c ∈ Fq is easily seen to be given by

n∑
i=0

cθ−1(c)θ−2(c) · · · θ−(i−1)(c)θ−i(ai).

In particular, for e ∈ N, t − c left divides te − 1 if and only if

cθ−1(c)θ−2(c) · · · θ−(e−1) = 1.

This will be used at the end of the proof of Theorem 3.1.

Example 3.1. Let F4 =
{
0, 1, a, a2 = a + 1

}
be the field of 4 elements and θ be the 

Frobenius automorphism defined by θ (a) = a2. Consider the polynomial f (t) = t −
a ∈ F4 [t; θ]. In the classical case, when f ∈ F4 [t], the exponent is 3. However, when 
f ∈ F4 [t; θ], we have 

(
t− a2) (t− a) = t2 − ta −a2t +a3 = t2 − (θ (a)+a2)t +1 = t2 −1. 

Thus we conclude that er (f) = 2.

We will need to work with the ring Mn(Fq) of matrices over Fq = Fpl . For C =
(cij)1≤i,j≤n ∈ Mn(Fq) a matrix with entries in Fq, we set θ (C) = (θ(cij))1≤i,j≤n. We 
collect some easy facts about the skew polynomial ring Mn(Fq)[t; θ] in the following 
lemma. Notice that the statement 4. in this lemma allows us to speak about the exponent 
of a polynomial in Mn(Fq)[t; θ].

Lemma 3.1. With the above notations the following holds:

1. The map θ defined on Mn(Fq) is a ring automorphism of order l (where q = pl).
2. We have a ring isomorphism Mn(Fq)[t; θ] ∼= Mn(Fq[t; θ]).
3. For A ∈ Mn(Fq) and f(t) =

∑n
i=0 ait

i ∈ Mn(Fq)[t; θ], we have that f(A) =∑n
i=0 aiA

[i] = 0 if and only if t −A right divides f(t) in Mn(Fq)[t; θ].
4. If f(t) ∈ Mn(Fq)[t; θ] is such that its independent term is invertible then er(f(t), t)

exists. In other words there exists e := er(f(t), t) which is minimal such that f(t)
right divides te − 1 in Mn(Fq)[t; θ].

For the convenience of the reader we briefly recall some results on semi-linear trans-
formations (they are special cases of the Pseudo-linear transformations, cf [4,5] and 
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[6] for more information) that will be used in the proof of the following theorem. Let 
θ ∈ Aut(A) be an automorphism of the ring A. For C a d ×d matrix in Md(A), we define 
TC : Ad −→ Ad by TC(v) = θ(v)C, where v stands for a row vector. We easily see that, 
for e ∈ N, T e

C(v) = θe(v)Ne(C). An obvious consequence of Theorem 1.10 in [6] gives 
a characterization as to when a polynomial f(t) ∈ R = A[t; θ] is such that f ∈ Rg. If 
g(t) ∈ A[t; θ] is a monic polynomial of degree d we let Tg = TCg

stand for the semi-linear 
map defined on Ad by the companion matrix Cg associated to g. We then have that 
f(t) ∈ Rg if and only if f(Tg)(1, 0, . . . , 0) = (0, . . . , 0) ∈ Ad.

Theorem 3.1. Let g (t) = tn + an−1t
n−1 + · · · + a0 ∈ Fq [t; θ] with a0 �= 0 and

Cg =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1

⎞
⎟⎟⎟⎟⎟⎠

∈ GLn(Fq)

the companion matrix of g. Then

1. er (t− Cg) = ordθ (Cg).
2. er (g) = ordθ (Cg).
3. The left and right exponent of the polynomial g are equal.

Proof.

1. Let us put e := er(t − Cg) and l := ordθ(Cg). We then have t − Cg right divides 
te − 1 and hence Ne(Cg) = id, which means that l = ordθ(Cg) divides e. On the 
other hand, if Nl(Cg) = id we get that (tl − 1)(Cg) = 0 and so t − Cg right divides 
tl − 1 in Mn(Fq) [t; θ]. This yields that e divides l, as desired.

2. Put m := ordθ(Cg) and remark that, thanks to the part 1. of the theorem, there exists 
a polynomial q(t) = (qij(t)) ∈ Mn(Fq)[t; θ] = Mn(Fq[t; θ]) such that q(t)(t − Cg) =
tm − 1. Equating the first row entries on both side we get
• q11(t)t + q1n(t)a0 = tm − 1 for the (11) entry,
• −q1i(t)t + q1,i+1(t)t + q1,n(t)ai = 0 for the entries (1, i) and 2 ≤ i ≤ n − 2,
• −q1,n−1(t) + q1,n(t)(t + an−1) = 0 for the (1, n) entry.
Going backwards we then get successively q1,n−1(t) = q1,n(t)(t +an−1) and replacing 
q1,n−1(t) in the previous equation leads to q1,n−2(t) = q1,n(t)(t2 + an−1t + an−2). 
More generally for 1 ≤ i ≤ n − 1 we obtain

q1,n−i(t) = q1,n(t)(ti + an−1t
i−1 + · · · + an−i) for 1 ≤ i ≤ n− 1.

In particular, q1,1(t) = q1,n(t)(tn−1 + · · ·+ a2t + a1). Replacing this value in the first 
equation q11(t)t + q1n(t)a0 = tm − 1 above we get q1,ng(t) = tm − 1. This shows that 
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er(g(t)) divides m. For the converse suppose that e = er(g(t)) and let q(t)g(t) =
te − 1 ∈ R := Fq[t; θ] ⊂ Mn(Fq)[t; θ]. Put d := deg g(t). We have te − 1 ∈ Rg and 
hence by Theorem 1.10 in [6] (see also the comments before this theorem) we get that 
(T e

g − 1)(I, 0, . . . , 0) = (0, 0, . . . , 0) ∈ Md(Fq)d, where the entries of the vectors are 
square matrices of size d = deg(g). This leads to θe(I, 0, . . . , 0)Ne(Cg) = (I, 0, . . . , 0)
and hence Ne(Cg) = I. So that ordθ(Cg) divides e. This yields the desired result.

3. We must show that, for e = er (g), the polynomial g (t) divides te − 1 on the right 
and on the left. Now er (g) = ordθ (Cg). Working in Md (Fq) [t; θ] with d = deg g (t), 
we have ordθ (Cg) = er (t− Cg). In Md (Fq) [t; θ], t − Cg is a right factor of te − 1 if 
and only if

θe−1 (Cg) · · · θ (Cg)Cg = 1.

Applying θ1−e, to this equality, we get

Cgθ
−1 (Cg) · · · θ1−e (Cg) = 1.

This means that t −Cg is a left factor of te−1 (cf. Remark 3.1(b)). Hence er (t− Cg) =
e� (t− Cg). �

The equality of the right and left exponent of a polynomial of an Ore–Frobenius 
extension has the following interesting consequence.

Corollary 3.1. For any polynomial g(t) ∈ Fq[t; θ] with nonzero constant term, and for 
any l ∈ N, g(t) is a right factor of tl − 1 if and only if it is a left factor of tl − 1.

Proof. Suppose that g = g(t) right divides tl − 1, this implies that e = er(g) = el(g)
divides l, say l = eq, for some q ∈ N. Since g also left divides te − 1 and tl − 1 =
(te − 1)((te)q−1 + · · · + te + t + 1) we conclude that g left divides tl − 1. The converse 
implication is obtained in the same way. �

In the sequel, we shall write e (f) for the exponent of f ∈ Fq [t; θ].

Example 3.2. Consider the polynomial g (t) = t3 + at + 1 ∈ F4 [t; θ]. The companion 
matrix of g is

Cg =

⎛
⎝ 0 1 0

0 0 1
1 a 0

⎞
⎠ ,

then

N2 (Cg) =

⎛
⎝ 0 1 0

0 0 1
2

⎞
⎠

⎛
⎝ 0 1 0

0 0 1

⎞
⎠ =

⎛
⎝ 0 0 1

1 a 0
2

⎞
⎠ .
1 a 0 1 a 0 0 1 a
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Since the order of N2 (Cg) in GL3 (F4) is 4, then, by Proposition 2.1, we have ordθ (Cg)
divides 2ord(N2(Cg)) = 8, and N8 (Cg) = N2 (Cg)4 = id, hence e (g) = 8. One can verify 
that

(
t5 + a2t3 + t2 + at + 1

) (
t3 + at + 1

)
= t8 + 1.

Note that the classical exponent of g is 21.

Example 3.3. Let F8 =
{
0, 1, a, a2, . . . , a6; a3 = a + 1

}
and θ (a) = a2. Consider the 

polynomial g (t) = t2 + at + 1 ∈ F8 [t; θ]. The companion matrix of g is

Cg =
(

0 1
1 a

)
,

then, by computing Ni (Cg) for i = 1, 2, . . ., we obtain e (g) = 9. In this case, the classical 
exponent is also equal to 9. However, in F8 [t; θ] we have the factorization

(
t7 + a2t6 + at5 + a3t4 + a6t3 + at2 + at + 1

) (
t2 + at + 1

)
= t9 + 1,

while in F8 [t] the factorization is

(
t7 + at6 + a6t5 + a3t4 + a3t3 + a6t2 + at + 1

) (
t2 + at + 1

)
= t9 + 1.

In the sequel, we denote by Fq the algebraic closure of Fq. We need a small lemma 
which is the analogue of a very well-known fact in the commutative setting.

Lemma 3.2. Let g(t) ∈ Fq [t; θ] be a monic irreducible polynomial and α ∈ Fq such that 
g(α) = 0 (i.e., t −α right divides g(t) in Fq [t; θ]). Then for any h(t) ∈ Fq [t; θ] such that 
h(α) = 0, g(t) right divides h(t) in Fq [t; θ].

Proof. Let p be the characteristic of the finite field Fq and write q = pn, for some n ∈ N. 
Let us first notice that Theorem 2.5 1) in [6] implies that there exists α ∈ Fq such that 
g(α) = 0. We let q′ be such that Fq ⊆ Fq′ and α ∈ Fq′ . If we denote by l the dimension 
of the extension Fq ⊆ Fq′ , we have q′ = ql = pnl. Let us then observe that we can 
extend θ to an automorphism of Fq′ [t; θ] by defining θ(t) = t. The polynomials fixed 
by θn are exactly the elements of Fq [t; θ], and one can easily check that g(θin(α)) = 0
for i = 0, . . . , l − 1. This implies that the least left common multiple m(t) of the set 
{t − θin(α) | 0 ≤ i ≤ l − 1} right divides g(t) in Fq′ [t; θ]. Since m(t) is fixed under the 
action of θn, we get that m(t) ∈ Fq [t; θ]. The fact that g(t) is irreducible then implies 
that m(t) = g(t).

Now, if h(t) ∈ Fq [t; θ] is such that h(α) = 0 we get that, for all 0 ≤ i ≤ l − 1, 
h(θni(α)) = 0 and hence m(t) = g(t) right divides h(t) in Fq [t; θ], as desired. �
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In the next proposition we will use the following convenient notations : for g1, . . . , gs ∈
R = Fq[t; θ] we denote by [g1, . . . , gs]� the least left common multiple of g1, . . . , gs. Similar 
notations are used for the least common multiple of integers.

Proposition 3.1. Let q = pl and let g, g1, . . . , gs be monic polynomials in Fq [t; θ] with 
nonzero constant terms. Then:

(a) the polynomial g is a right (resp., left) factor of tc − 1, where c is a positive integer, 
if and only if e (g) divides c;

(b) if g is a right (resp., left) factor of h, then e (g) divides e (h);
(c) with the notations introduced before the statement of the proposition we have 

e ([g1, . . . , gs]�) = lcm (e (g1) , . . . , e (gs));
(d) for α ∈ F

∗
q , e (t− α) = ordθ (α);

(e) if α is a primitive element of Fq = Fpl , then e (t− α) = l (p− 1);
(f) if α ∈ Fq is such that t − α is a right (resp., left) factor of g (t) in Fq [t; θ] and g (t)

is irreducible in Fq [t; θ], then e (g) = ordθ (α);
(g) the map θ can be extended to Fq [t; θ] via θ (t) = t. We then have

1) e (g (t)) = e (θ(g(t))), for g (t) ∈ Fq [t; θ],
2) If h (t) =

[
g (t) , θ (g (t)) , . . . , θl−1 (g (t))

]
�
, then e(h (t)) = e (g (t)) and θ (h (t)) =

h (t) (equivalently th (t) = h (t) t).

Proof. (a) and (b) follow easily from our earlier results.
(c) This result is true for general relative exponents, as might be checked using 

Lemma 2.2(c). We give another self-contained proof. We denote by g the least left com-
mon multiple of g1, . . . , gs i.e., g := [g1, . . . , gs]�, e := [e1, . . . , es] where, for 1 ≤ i ≤ s, 
ei := e(gi). Since for 1 ≤ i ≤ s, gi right divides g, we have that ei divides e(g) and hence 
e divides e(g). On the other hand, for 1 ≤ i ≤ s, gi divides on the right tei −1 and hence 
also te − 1. This leads to the fact that g divides on the right te − 1 and so e(g) divides e. 
This yields the proof.

(d) This comes directly from Theorem 3.1 by considering g(t) = t − α.
(e) Suppose that α ∈ Fq is of order q−1 = pl−1 and put e := e (t− α). The definition 

of [l(p − 1)] gives

[n (p− 1)] = pl(p−1) − 1
p− 1 =

(
pl − 1

)
(pl(p−2) + · · · + pl + 1)

p− 1 .

Since for i ∈ N, pi ≡ 1 mod (p − 1), we conclude that p − 1 divides pl(p−2) + · · · + pl + 1, 
and hence pl − 1 divides [l (p− 1)]. This leads to Nl(p−1) (α) = α[l(p−1)] = 1, so e divides 
l (p− 1) and there exists an integer s such that

es = l (p− 1) . (1)
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On the other hand, Ne (α) = α[e] = 1, then pl − 1 divides [e], hence p − 1 divides 
[e] = pe−1 + · · · + p +1. Using again the fact that, for i ∈ N, we have pi ≡ 1 mod (p − 1), 
then [e] ≡ e ≡ 0 mod (p − 1), and there exists an integer k such that

e = k (p− 1) . (2)

We then obtain

l = ks. (3)

Now, e = e(t −α) = ordθ(α) gives that 1 = Ne(α) = α[e] and pl − 1 divides [e]. Let thus 
a ∈ N be such that [e] = a(pl − 1). Write e = lb + r, with 0 ≤ r < l. We then have

[e] =
(
plb − 1

)
pr + pr − 1

p− 1 =
(
pl − 1

)
(pl(b−1) + · · · + pl + 1)pr + pr − 1

p− 1 ,

so pl − 1 divides [e] which divides

(p− 1) [e] =
(
pl − 1

)
(pl(b−1) + · · · + pl + 1)pr + pr − 1,

which implies that r = 0, hence

e = lb, (4)

and (p− 1) [e] = (p− 1) a 
(
pl − 1

)
=

(
pl − 1

)
(pl(b−1) + · · · + pl + 1), then (p− 1) a =

pl(b−1) + · · · + pl + 1 and this implies that b ≡ 0 mod (p − 1), so there exists an integer 
c such that

b = c (p− 1) . (5)

Finally, using successively (2) , (4) and (3), we obtain

e = k (p− 1) = lb = ksb = ksc(p− 1),

this yields s = c = 1, then l = k, and e = l (p− 1), as desired.
(f) Put l := ordθ(α). Statements a) and d) above show that l = e(t − α) divides e(g). 

On the other hand, we also have Nl(α) = 1 and hence (tl − 1)(α) = 0 and Lemma 3.2
shows that g(t) divides tl−1. Statement a) above implies that er(g) divides l. This yields 
the proof.

(g) 1) is due to the fact that polynomials of the form tr−1, r ∈ N, are invariant under 
the extension of θ.

2) is now an obvious consequence of (c) above. �
Let us end this paper with the following proposition which gives more information on 

the exponent of a power gb.
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Proposition 3.2. Let g (t) ∈ Fq [t; θ] with nonzero constant term and let e = er(g) be its 
exponent. Suppose that te−1 = hg = gh, which is the case when the order of θ divides e. 
Let b be a positive integer, and s be the least integer such that ps � b. Then e 

(
gb
)

= epu, 
where 0 ≤ u ≤ s.

Proof. Put c := e 
(
gb
)
. Since g right divides gb, Proposition 3.1 shows that e = er(g)

divides c. Moreover, since g (t) right divides te − 1 and gh = hg = te − 1 then gb (t)
right divides (te − 1)b, so gb (t) right divides (te − 1)p

s

= tep
s − 1. Hence Proposition 3.1

implies that c divides eps. Since c is a multiple of e, this gives c = e 
(
gb
)

= epu, where 
0 ≤ u ≤ s. �
4. Conclusion

We have defined the notion of relative exponent of two elements in a ring, paying 
particular attention to the case of a finite ring. This has then been applied to the case of 
skew polynomials over finite rings. The case of polynomials of a Frobenius–Ore extension 
Fq[t; θ] has been specifically targeted in order to extend classical theorems related to the 
exponent (a.k.a. period) of a polynomial over a finite field.
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